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Abstract
Purpose of Review  The purpose of this review is to summarize insights gained by finite element (FE) model-based mechani-
cal biomarkers of bone for in vivo assessment of bone development and adaptation, fracture risk, and fracture healing.
Recent Findings  Muscle-driven FE models have been used to establish correlations between prenatal strains and morpho-
logical development. Postnatal ontogenetic studies have identified potential origins of bone fracture risk and quantified the 
mechanical environment during stereotypical locomotion and in response to increased loading. FE-based virtual mechanical 
tests have been used to assess fracture healing with higher fidelity than the current clinical standard; here, virtual torsion 
test data was a better predictor of torsional rigidity than morphometric measures or radiographic scores. Virtual mechanical 
biomarkers of strength have also been used to deepen the insights from both preclinical and clinical studies with predictions 
of strength of union at different stages of healing and reliable predictions of time to healing.
Summary  Image-based FE models allow for noninvasive measurement of mechanical biomarkers in bone and have emerged 
as powerful tools for translational research on bone. More work to develop nonirradiating imaging techniques and validate 
models of bone during particularly dynamic phases (e.g., during growth and the callus region during fracture healing) will 
allow for continued progress in our understanding of how bone responds along the lifespan.

Keywords  Bone · Imaging · Finite element analysis · Quantitative

Introduction

What are mechanical biomarkers in bone? Biomarkers are 
indicators of biological phenomena or physiologic function 
that can be measured accurately and reproducibly. In mod-
ern medicine, a biomarker is used as a surrogate measure 
of the health and function of specific organs and systems 
and often originates from blood or tissue biopsies. Recently, 
the definition of a biomarker has expanded to include data 
from medical images [1] and biomechanical assessments [2, 
3] that can provide insight into physiological phenomena. 
For bone, plane film radiographs (X-rays) are the oldest and 
most broadly accepted clinical measurement tool [4] used 
for diagnosing bone fractures and monitoring healing. Tradi-
tionally, X-ray images are nonquantitative and are therefore 
not a biomarker of bone function.

The primary function of bone is structural, so relevant 
biomarkers for bone should include measures related to 
mechanical quality. Ideally, such biomarkers would be sen-
sitive to clinically relevant changes and useful for moni-
toring the effects of interventions or predicting individual 
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outcomes. Here, we define mechanical biomarkers as meas-
ures of the mechanical response of bone to external loads. 
These measures include organ-level mechanical behavior 
(e.g., stiffness or rigidity) or tissue-level behavior (e.g., 
stress, load to failure, or strain energy density), and there 
are several helpful sources describing their derivation in the 
context of bone [5–7].

Why are bone mechanical biomarkers important? 
Mechanical biomarkers are useful measures of bone quality 
at multiple length scales and can serve as (1) explanatory 
variables of bone development and predictive indicators of 
adaptation at the organism level and (2) measures of organ 
and tissue quality for fracture risk assessment, evaluation of 
healing, and the effect of treatments for bone disease.

The contribution of mechanical loading to bone (re)
modeling has been probed using a variety of animal models 
[8, 9] that have mimicked observations in humans. There 
remains the potential to harness the natural mechanoadap-
tive response of bone to improve bone quality via exercise. 
Unfortunately, recommendations for exercise tend to be 
qualitatively described (e.g., one should engage in impact 
loading exercises). There is a missed opportunity in using 
quantitative mechanical biomarkers of bone adaptation to 
develop informed, and possibly patient-specific, exercise 
interventions that induce beneficial adaptations in fracture 
prone regions.

Unfortunately, regardless of preventive measures, bone 
fractures from a loss in bone quality or trauma inevitably 
still occur. The etiology of bone pathology is complex, and 
currently, there are no serological biomarkers that directly 
reflect bone mechanical quality. Instead, treatment decisions 
are based on indirect measures like bone mineral density, 
clinical risk prediction tools [10], or visual interpretation of 
imaging. The prognostic limitations of most clinical assess-
ments reinforce patterns of care that tend to be conserva-
tive and reactive—waiting for clinical pathology to present 
unambiguously—rather than proactive and preventive. The 
rationale for developing mechanical biomarkers from imag-
ing data lies in the capacity to reorient the diagnosis of bone 
disease and subsequent treatment planning to target the end-
point functional measure of interest—the mechanical integ-
rity of a patient’s bone—using methods that are objective, 
quantitative, precise, and patient-specific.

How can bone imaging be used to measure mechanical 
biomarkers? Direct experimental measurements of bone 
mechanics have yielded important insights into how bone 
responds to loading, but destructive mechanical tests are 
not translatable as clinical biomarkers [11, 12]. Measuring 
bone mechanics in vivo is impractical because of its inva-
sive nature. As an alternative, image-based finite element 
analysis (FEA) has been used to computationally measure 
the mechanical function of bone. Since the first FEA of bone 
was performed and reported in 1972 [13], swift progress has 

been made using FEA in orthopedic applications and has 
been summarized elsewhere[14, 15]. The increasing avail-
ability and quality of medical image data, coupled with the 
boom in computational power at the end of the twenty-first 
century, has led to a rapid rise in three-dimensional image-
based FEA.

Recent advances in FEA in the areas of bone response 
to in vivo stimuli at the whole-body level as well as assess-
ments of bone quality at the organ and tissue level have 
demonstrated the value of using mechanical biomarkers 
(Fig. 1). Thus, the purpose of this review is to provide a 
brief introduction to FEA, summarize insights gained from 
image-based FEA mechanical biomarkers in bone at varying 
length scales, and offer a critical perspective on challenges 
remaining to be overcome.

Finite Element Analysis—a Brief Primer

Although the finite element (FE) method can be used to pre-
dict many types of physical phenomena, our focus is on the 
use of the FE method to predict the mechanical behavior of 
bone. Briefly, in an FEA, a given structure is discretized into 
many smaller, simple, interconnected structures (elements), 
each of which is assigned material properties such as elastic 
modulus. When a force or displacement (termed a bound-
ary condition) is applied to the structure, the deflection of 
each element edge and corners is calculated based on equa-
tions such as Hooke’s law. Once all of the equations gov-
erning element mechanical behavior, boundary conditions, 
and constraints have been satisfied, mechanical parameters 
such as stress and strain can be calculated. Note, stress and 
strain are computed throughout the model for each increment 
(i.e., load or displacement applied at the nodes) at what are 
called integration points within the element. To determine 
the stress distribution within a solid element, interpolation 

Fig. 1   Applications of mechanical biomarkers in bone at the whole 
body, organ, and tissue level
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functions (e.g., linear vs. quadratic) are first used to deter-
mine the displacement at arbitrary points within the ele-
ment, generating a displacement field. This displacement 
field can then be differentiated to determine the strain field. 
The model defined stress–strain relationships (i.e., mass 
density, Young’s modulus, Poisson’s ratio, etc.) for the ele-
ment are then used to compute the stresses. A representative 
workflow for creating an image-based finite element model 
is shown in Fig. 2.

Model Geometry

Most models begin with a computed tomography (CT) 
image stack, which is a matrix of 3-D pixels called volume 
pixels, or voxels. Each voxel contains the local measure-
ment of radiodensity, a measure related to X-ray attenuation, 
expressed in Hounsfield units. To create a model, the voxels 
of interest must be identified in a process termed segmenta-
tion. Next, the bone voxels can be directly converted into 
hexahedral elements (see Fig. 4 for an example) [17], a pro-
cess automated by Keyak [18] to create a 3D representation 
of bone. Alternatively, software-aided methods can be used 
to define bone surfaces, which are then filled with tetrahe-
dral or hexahedral elements. Similar procedures are used 
for micro-CT and high-resolution peripheral quantitative 
CT (HR-pQCT) image data, which produce microstructural 

models of bone. Thus, bone geometries can now be cre-
ated at different length scales to answer a range of questions 
related to the mechanics of bone.

Bone Material Properties

Success with image-based FE modeling of bone requires 
robust methods for inferring local material properties 
from the voxel-level radiodensity data. Bone modulus and 
strength are positively related to volumetric bone mineral 
density (BMD) and thus with CT attenuation. BMD cali-
bration with a calcium hydroxyapatite or hydrogen dipotas-
sium phosphate phantom enables quantitative interpretation 
of radiodensity and can help mitigate differences between 
scanners and user settings [19–21]. Numerous CT density-
to-property scaling equations have been reported in the 
literature and reviewed elsewhere [22, 23]. Many of these 
equations were derived experimentally in which samples 
of bone were imaged and mechanically tested to relate CT 
density to the mechanical properties of interest (typically 
modulus) using regression analysis. Notably, these relation-
ships are site-specific owing to the broad spatial heterogene-
ity in bone microstructure [24]. Thus, best practice involves 
using an anatomically specific density-modulus relationships 
whenever possible.

Empirically deriving density-modulus relationships is 
challenging in highly heterogeneous mineralized tissues 

Fig. 2   General procedure for image-based finite element (FE) mod-
eling illustrated for a healing ovine osteotomy [16]. (a, b) CT image 
stacks are segmented to identify the  bone geometry. The volume is 
then meshed (c), shown here using tetrahedral finite elements. (d) 
Local material properties are interpolated and scaled from the radi-

odensity data in each voxel. (e) After material assignment, boundary 
conditions and loads are applied. In this example, the virtual loading 
conditions replicate experimental post-mortem torsion testing. Note: 
Direct voxel-to-FE model building can also be achieved using hexa-
hedral finite elements (see Fig. 4)
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such as the fracture callus [25]. In these situations, or when 
the material properties are unknown, FEA can be used to 
perform in situ inverse optimization of the density-modulus 
scaling function, where the objective is to achieve agree-
ment between an experimental biomechanical test of bone 
and an equivalent virtual test performed in the model. This 
approach has been used to fit a density-modulus scaling 
function for intact ovine cortical bone [16], human metatar-
sals [26], and to fit a dual-zone material model that differen-
tiates between mineralized and non-mineralized fracture cal-
lus tissue [27]. The inverse approach has also been used in 
voxel-based continuum FEA of trabecular bone in the ankle, 
without requiring trabecular binarization in the segmentation 
process, making it translatable to lower-resolution clinical 
imaging protocols [28••]. Model fidelity can be improved 
with the inclusion of trabecular structural anisotropy which 
can be measured from the attenuation gradients in clinical 
CT [29].

Boundary Conditions

Boundary conditions are a set of loads and constraints used 
to define the mechanical problem (i.e., research question) 
of interest as well as the nature of the model measure-
ment being made. Broadly speaking, models can be used 
to predict mechanical behavior under two scenarios: (1) in 
response to an arbitrary load (a virtual mechanical test) or 
(2) in response to physiological loads.

The virtual mechanical test approach applies simple and 
highly controlled boundary conditions such as axial com-
pression, torsion, or bending to estimate the stiffness or 
strength of a bone and produce mechanical biomarkers. The 
advantages of virtual mechanical tests are that the simula-
tions can often be validated against experimental tests and 
the simulations rely on relatively simple assumptions (e.g., 
small displacements relative to the model size, no perma-
nent deformation upon removal of the load, etc.). In contrast, 
the goal of modeling physiologic loads is to understand the 
response of bone to in vivo loading scenarios. This approach 
is more complex because muscles and other connective tis-
sues that interact with bone in living organisms are included 
within the FE models. The advantage is the capacity to pro-
vide insights into bone development, mechanical sources of 
injury, and the effects of interventions.

Bone Response to In Vivo Loading

Understanding how in vivo mechanical loading results in 
bone formation or resorption is challenging because of the 
complexity of muscle-bone interactions that span multiple 
length scales. At the whole-body level, musculoskeletal 
models provide predictions of muscle forces that can be 

integrated with FE bone models. Briefly, musculoskeletal 
simulations model the skeletal system as rigid body seg-
ments (bone) with kinematically prescribed joints that define 
the allowable movement between each segment. A system 
of dynamic equations of motion is used, with experimental 
measurements of segment (bone) motion and external loads 
(e.g., ground reaction force) as inputs. These equations are 
then iteratively solved [30, 31] for the muscle and joint reac-
tion forces that generated the measured movement, which 
can then be mapped as boundary conditions onto an FE 
model of bone. These muscle-driven FE models have been 
used to understand mechanisms of both bone development 
and adaptation to loads.

Bone Development

Simulations of endochondral ossification in long bones have 
been used to model both mechanical and biological factors 
that contribute to bone formation [32]. Enabled by cine-MRI 
that can record in utero fetal kinematics, muscle-driven FEA 
has been used to evaluate the relationship between femur and 
pelvis bone strains and fetal positions [33, 34] as well as the 
correlation between cortical thickness and muscle forces on 
the iliac crest [35•]. These models can help identify associa-
tions between in utero biomechanics and congenital bone 
disorders such as hip dysplasia and scoliosis.

Understanding the mechanical contributions to bone 
growth is necessary when considering exercise interventions 
earlier in life as a preventive method of optimizing bone 
health to reduce lifetime fracture risk. Postnatal growth is 
a demanding period during which the skeletal system must 
accommodate a tenfold increase in mass. The capacity to 
sustain such loads is influenced by mechanical cues that 
mediate bone formation [36], and therefore, growth repre-
sents an ideal timeframe during which bone strength can 
be increased. Professional athletes in unilateral sports, such 
as baseball and tennis, have significant adaptations in the 
loading arm compared to the contralateral arm with some 
benefits maintained lifelong [37]. Importantly, athletes at the 
professional level have likely been physically active since 
childhood. What remains to be demonstrated is which exer-
cises performed while young might provide the most benefit 
without increasing the risk of overuse injuries. Doing so 
requires decoupling the contribution of bone development 
guided by stereotypical locomotion (e.g., walking) from 
exercise-initiated adaptation.

Animal models are useful to characterize the evolution of 
mechanical strains, bone structure, and composition during 
ontogeny [38, 39]. Equine bone can serve as a dual ben-
efit model because of the incidence of bone stress injuries 
that result in significant mortality rates in equine athletes. 
Similar to humans, exercise has been suggested as a preven-
tive approach to reduce fracture risk. The ability to evaluate 
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exercise when young is more feasible in horses because they 
reach skeletal maturity within three years of age. FE mod-
els during equine development have identified reduced bone 
volume fraction in areas prone to fracture, thus providing 
a structural target for exercise in equine bone (Fig. 3a–c) 
[39]. Characterizing bone development provides the nec-
essary benchmarking from which future exercise interven-
tions can be compared to evaluate the influence of additional 
mechanical loading on adaptation during growth. In addition 
to healthy development, muscle-driven FE models have been 
used to evaluate the contribution of muscle forces to mor-
phological parameters associated with developmental bone 
disorders in people, such as the neck-shaft angle and degree 
of femoral anteversion [40, 41].

Bone Adaptation to Mechanical Stimuli

While exercise when young might be the most opportune 
time to induce skeletal changes, exercise at any stage of life 
will still be beneficial for bone. Muscle-driven FEA of skel-
etally mature bone has been used to evaluate exercises that 
might induce bone adaptation. One benefit of using FEA is 
the capacity to evaluate spatially targeted measures wherein 
the mechanical biomarkers (strain, strain energy density) can 
be evaluated in the areas prone to fracture. Moreover, such 
models can provide insights into the muscle groups that 
induce the required strains and therefore be used to develop 
interventions. For example, exercises targeting the gluteal 
muscles, such as stair climbing, result in elevated strains in 
the femoral neck relative to walking and thus could be effec-
tive for inducing bone adaptation [42]. More recently, mus-
cle-driven FEA has been used to understand tibia bone strain 

in basketball players during sport-relevant tasks [43••]. This 
data can provide a dual view of the measured biomarkers: on 
the one hand increased strains may be a biomarker for poten-
tial adaptation. On the other hand, elevated strains without 
sufficient rest may increase accumulated damage and cause 
fatigue-related injuries. These data are useful in the design 
of training regimens in athletes to ensure that overuse inju-
ries can be avoided.

One approach to reduce the uncertainty in predicting 
muscle loads for muscle-driven FEA predictions of in vivo 
bone strain is to study simpler physiologic tasks in anatomic 
locations with fewer muscle attachments. For example, to 
investigate the link between the mechanical strain environ-
ment and bone adaptation, FEA was used to assign subject-
specific strains to women who completed a simple upper 
extremity compressive loading task (Fig. 3d–f) [44]. Those 
participants who gained the most bone after 12 months had 
experienced significantly higher bone strains during the 
loading task than those who gained the least [45]. These 
types of studies may be able to identify osteogenic targets 
for future exercise interventions.

Virtual Mechanical Tests

Fracture Risk Assessment

The occurrence of a fracture depends on an event, such as 
a fall, which loads the bone beyond its capacity. Because 
fracture events occur infrequently, clinical trials require large 
numbers of participants to detect a fracture reduction effect. 
FEA-related outcomes are attractive as a more sensitive 

Fig. 3   (a) Longitudinal imaging of equine bone during postnatal 
development was used to characterize bone formation including (b) 
regions prone to fracture (* indicates region of low bone volume 
fraction). Models of equine bone under different types of exercise 
gaits (c) can be used as preclinical tools to determine whether strain 
energy density, a mechanical biomarker of remodeling, is elevated in 

the desired regions of bone. In humans, multi-scale modeling of the 
distal radius (d) using clinical CT-based models based on experimen-
tal measurement of external forces (e) have been used to understand 
the mechanical response in trabecular bone using higher resolution 
micro-finite element models (f)
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and specific measure of a treatment effect than fracture 
incidence for osteoporosis drug studies [46••]. FEA can 
directly measure how an intervention affects bone mechani-
cal behavior, which is often the target of the intervention. 
Virtual mechanical tests (Fig. 4) can be used to estimate 
bone strength parameters such as whole bone stiffness and 
failure load using reaction force–displacement data and 
appropriate failure criteria, respectively.

In vitro studies have consistently shown that CT-based 
FEA measures outperform areal bone mineral density 
(aBMD) measures, which are the current clinical standard, 
for fracture prediction at the hip and spine in aging and 
osteoporotic patient populations (e.g., higher odds ratios and 
sensitivity) [47–50]. However, clinical studies with prospec-
tive patient cohorts have failed to conclusively demonstrate 
that CT-based FEA serves as a better predictor of incident 
hip fracture than aBMD [15, 49]. Despite this, BMD and 
FE-based bone strength measures derived from opportun-
istic CT data have received FDA approval (VirtuOst) for 
identification of osteoporosis and fracture risk assessment, 
though clinical implementation is currently limited [15, 51].

Recent work using micro-FE models derived from HR-
pQCT data found estimated failure load at the peripheral 
skeleton to be a strong predictor of incident fracture, inde-
pendent of aBMD [52, 53]. These models are able to assess 
tissue-level mechanical properties, giving insight into the 
interplay of bone microarchitecture and strength as well as 
identify bone phenotypes associated with elevated fracture 
risk [54, 55•, 56].

Preclinical Fracture Healing

Subject-specific FE models are increasingly being used to 
measure bone healing and complement or replace other 

outcome measures. For example, predicted strains from FE 
models have been used to interpret histological findings in 
studies of load-dependent osseointegration of porous scaf-
folds [57] and dental implants [58–60]. Virtual compression 
testing using micro-FEA in rabbit models of fracture has 
been used to measure trabecular bone defect healing [61] 
and predict the strength of large-defect bone repair [62]. In 
rodents, micro-FE models have been used to quantify the 
effect of traumatic brain injury on fracture healing [63] and 
to characterize the strains associated with an osteotomy non-
union model [64]. In ovine fracture healing studies, image-
based virtual torsion testing out-performed radiographic 
scoring and morphometric assessments of the callus for 
predicting whole-bone torsional rigidity [16].

FE modeling also presents exciting opportunities to rede-
sign experiments that reduce and refine the use of animals. 
Historically, the imaging data needed to build FE models 
has been acquired postmortem, so the analysis constitutes 
an endpoint of the experiment. Validated virtual mechani-
cal tests could obviate the need for destructive postmortem 
sample preparation and mechanical testing. The increasing 
availability of live animal imaging techniques will allow for 
longitudinal in vivo assessments using virtual mechanical 
tests and reduce the number of animals needed to study the 
kinetics of bone repair across multiple timepoints.

Finally, FEA affords the ability to achieve greater stand-
ardization by adapting the experimental conditions to 
account for differences between animals or species. For 
example, real-time FEA was used in a mouse tail vertebral 
defect healing experiment to tune the applied mechanical 
loading on an individual-specific basis [65]. Applying a sim-
ilar technique to a mouse femoral defect model successfully 
produced targeted strains in all animals, reduced variance 
within the experimental group, and avoided catastrophic 

Fig. 4   Example of a proximal femur that is directly converted from a 
CT image to an FE model with hexahedral elements. (a) The region 
of interest is segmented from the CT image stack and resampled to 
create isotropic voxels. (b) Voxels are directly converted into linear 
hexahedral elements and assigned density-based material proper-
ties. Because the mesh itself is rather simple, more complex material 

definitions can be assigned without greatly increasing computational 
cost. (c) A virtual mechanical test that simulates a sideways fall onto 
the hip is performed. In this case, the primary outcome of interest 
may be stress, strain, overall stiffness, or the peak force required to 
generate a specific displacement (validated with mechanical testing)
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overloading events [66•]. Using these techniques could also 
enable strategic design of translational animal models, as 
in one experiment that used FE analysis to justify an ovine 
model for testing human mandibular fixation devices [67].

Clinical Fracture Healing

When used in a clinical setting, image-based virtual mechani-
cal testing can provide mechanical insights that are not cur-
rently available any other way (Fig. 5). For example, in tib-
ial fractures, virtual torsion testing provides a quantitative 
assessment of structural callus formation that predicts time 
to union more reliably than patient-reported outcome meas-
ures or radiographic scores and may enable early diagnosis of 
compromised healing [68•]. Recently, virtual torsion testing 
was used to detect differences between implant groups in a 
tibial fracture healing study [69]. Patient-specific FEA also 
shows promise for tracking the longitudinal progression of 
bone healing following mandibular reconstruction surgery, 
which may support improved rehabilitation care [70].

In trabecular bone, subject-specific micro-FE modeling 
from HR-pQCT data has demonstrated the potential for meas-
uring fracture healing in the scaphoid and distal radius (Fig. 6) 
[71–73]. Despite this potential, several challenges remain, 
including image registration in serial scanning, incompatibil-
ity with in situ hardware, image blur due to patient motion, 
and selection of an appropriate material model [74, 75]. In the 
applications focused on primary and metaphyseal bone heal-
ing, the inability to differentiate between bone fragments that 
are in close proximity versus those that are actually structur-
ally united results in proximity-connectivity errors that likely 
lead to overestimation of stiffness [72].

Insight into Clinical Interventions

Because FEA can capture the mechanical effects of changes 
in bone structure, it can also be used to understand the effect 
of specific interventions. For example, FE models have doc-
umented loss of tibia strength after spinal cord injury [76] 
and shown that the related structural changes may not be 
recoverable, even with drug treatment [77]. FEA outcomes 
can also have better sensitivity than 2D imaging-derived 
measures like dual energy X-ray absorptiometry (DXA). 
Clinical trials using FEA outcomes have detected clini-
cally important increases to distal femur ultimate torsional 
strength among people with spinal cord injury who received 
functional electrical stimulation assisted rowing combined 
with zoledronic acid, and large decreases among those with 
rowing only [78]. Another study in individuals with spinal 
cord injury showed that a combination of teriparatide and 
mechanical vibration significantly increased proximal tibia 
torsional stiffness after 12 and 24 months, compared to no 
change with either intervention alone [79]. These examples 
highlight the ability of FEA to detect clinically important 
changes in bone strength and stiffness, which were not 
always apparent from DXA data alone.

Current Challenges and Critical Needs

FEA-derived biomarkers in bone have been useful in devel-
oping fracture risk assessments, understanding fracture 
healing, assessing the effects of clinical interventions, and 
providing insights into growth and adaptation in vivo. In the 
near future, there are clear opportunities to expand this area 
of research to new indications by examining the limitations 

Fig. 5   Examples of clinical applications of virtual mechanical test-
ing to measure tibial fracture healing using a bone healing score: (a) 
virtual mechanical testing objectively detected delayed healing in a 
mixed cohort of open and closed fractures; data from [68•].  (b) In 
a cohort of closed tibial fractures, patients with comorbidities had 

significantly lower bone healing scores from their virtual mechanical 
tests, a difference that was not captured in any other outcome meas-
ure. (c) Image-based FE models for two patients from (b) with nearly 
identical tibial fracture patterns; the non-smoker had a bone healing 
score of 116% while the smoker had a bone healing score of 78%
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associated with the assumptions involved in creating image-
based FE models.

Image‑Based Material Properties

The assignment of bone material properties in FE models 
remains a source of debate, with various approaches used by 
different research groups. For the purposes of comparative stud-
ies, for example when comparing the effect of different loads on 
the same bone within a given study, the systematic errors intro-
duced by material property assignment are mitigated. Critically, 
studies using FE models must report the imaging parameters, 
scanner settings, reconstruction kernels, precision, repeatabil-
ity, and reproducibility of equipment and methods. Readers are 
referred to a summary of best practices in obtaining computed 
tomography data for quantitative analysis found in [80].

One open challenge in modeling the mechanical prop-
erties of mineralized tissues is the difficulty of character-
izing tissues that cannot be readily obtained from human 
cadavers, such as fracture callus and physes in developing 
children. These tissues are unlike cortical and trabecular 
bone, where direct validation of FE model material prop-
erties can be performed. Similarly, collagen cross-linking, 
advanced glycation end products, and the water content in 
bone also contribute to bone properties but are currently not 
accounted for in CT-based FEA. The degree of error in FE 
models of bone from individuals with diseases that affect the 
non-mineral components is not known and requires further 
research. Modeling these specific cases requires inferences 

from other species and may be enhanced in the future with 
the development of radiation-free imaging methods such as 
magnetic resonance (MR) imaging.

In a clinical setting, a major challenge with current 
image-based FE methods for measuring and modeling bone 
is that CT scanning exposes the patient to ionizing radia-
tion. Dose reduction protocols and improved reconstruction 
kernels now allow ultra-low-dose CT-to-FE analysis in the 
distal extremities [68•]. As such, in contrast to standard 
clinical CT, HR-pQCT offers a low effective radiation dose 
procedure for imaging limb extremities [74]. One limitation 
of this modality is that HR-pQCT scanners are not widely 
available and their field of view is limited to a small volume 
of interest in the distal extremities. Regardless of imaging 
modality, radiation exposure remains a significant concern 
for serial imaging of radiosensitive anatomic sites including 
the head, chest, and groin, and higher-risk patient groups 
such as children. An opportunity for innovation is in the 
development of surrogate markers for bone mechanical prop-
erties that can be obtained through MR imaging protocols. 
Ultrashort echo time (UTE) MR sequences have been used 
to generate FE models of distal tibia trabecular bone with 
strong correlations between experimental and virtual com-
pressive stiffness measures [81]. Moreover, efforts are being 
made to develop empirical relationships between UTE-MRI 
measures of collagen-bound water and pore water concentra-
tions and tissue material properties (i.e., elastic modulus and 
strength) at the organ scale [81]. MR-based FEA also shows 
promise for clinical assessment of hip fracture risk [82, 83]. 

Fig. 6   (a) High-resolution peripheral quantitative computed tomogra-
phy (HR-pQCT) images and (b) associated contour plots of effective 
strain from a 33-year-old female with a dominant arm distal radius 
fracture. Recovery of the load transfer from the trabecular to the cor-

tical bone compartments occurs between 5 and 13  weeks post-frac-
ture, concurrent with cortical bridging observed in the mid-sagittal 
plane of the HR-pQCT slice (arrows)
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Despite these successes, reliable methods for assigning mate-
rial property behavior based on signal attenuation in MR-
based FEA are not yet well defined or accepted, prohibiting 
widespread direct adaptation of CT-based FEA pipelines for 
MRI data. MR-to-FE methods are clearly in their infancy 
compared to CT-based methods, and further work is needed 
to validate MR-based markers of bone mineral density.

Boundary Conditions

In the case of virtual mechanical tests, FEA simulations provide 
noninvasive information about physiologically relevant, but 
simplified loading scenarios that often replicate the conditions 
of a benchtop mechanical test and can be validated. Thus, the 
majority of these models are only valid for the specific loading 
scenarios from which they are validated, and further work is 
needed to assess the potential insights to be gained from virtual 
loading modes that are not direct surrogates of in vitro experi-
ments. Regardless of the loading scenario to be simulated, FE 
model precision must be assessed and reported [84], so that the 
limits of detectable change can be determined.

The potential for understanding true physiologic loading 
lies in muscle-driven FEA, but as these approaches become 
more sophisticated and includes more assumptions, it becomes 
more challenging to assess model accuracy and validity because 
experimental measures of bone mechanical biomarkers are lim-
ited. A better understanding of how model parameters affect 
predicted outcomes is needed and additional insight may be 
gained from foundational parametric studies [85]. Above all, 
readers should be cautious when comparing results between 
studies, especially when the models have high-complexity, 
due to potential differences in how the models are constructed. 
Furthermore, the labor-intensive nature of muscle-driven FEA 
tends to result in studies with smaller sample sizes.

Validation

The lack of a publicly available, heterogeneous, and com-
prehensive dataset for methods validation prohibits sufficient 
assessment of the robustness of mechanical bone biomarkers 
derived from image-based FE modeling. In the future, open 
access software and data repositories will help drive the selec-
tion of the appropriate analysis methods for specific applica-
tions. This will make it possible to immediately access and 
cross-check updates to methods and their effects on parameters. 
With proper validation of new technologies, we can ensure that 
FE-based analyses add value in patient diagnosis and care.

Clinical Translation

As mentioned, the clinical implementation of FEA-based 
biomarkers is in the early stages of growth [49] and more 

work is needed to understand how the data from FEA can 
be practically integrated into a clinical setting. For exam-
ple, while numerous mechanical biomarkers of bone can be 
measured from FEA, an easily interpretable and population-
normed summary score, similar to FRAX or DXA, is needed 
to define risk of fracture. Strategic investments are critically 
needed to develop image-based mechanical biomarkers for 
use as decision-support tools in a clinical setting.

Concluding Remarks

With continued evolution of technology and best practices, 
the utility of bone mechanical biomarkers using image-based 
FEA will undoubtedly increase. Here, we have summarized 
some of the methods by which computational biomarkers can 
be used to provide insights into the response of bone to a range 
of conditions spanning both healthy and pathological states at 
all stages of life. Effort is still needed to ensure that the context 
for the use of FEA is justified for the question at hand and that 
underlying assumptions are understood and transparent. With 
such effort, and continued collaborations between engineers 
and medical practitioners, translatable outcome measures for 
evaluating bone response to loads will be possible.

Data Availability  Data sharing is not applicable to this article as no new 
data were created or analyzed in this study.

Declarations 

Conflict of Interest  HD discloses stock or stock options in OrthoXel, 
DAC (Cork, Ireland) and is an inventor of patents licensed to or held 
by OrthoXel. There are no other relevant competing interests for any 
of the authors.

Human and Animal Rights and Informed Consent  This article does not 
contain any studies with human or animal subjects performed by any 
of the authors.

References 

Papers of particular interest, published recently, have 
been highlighted as:  
• Of importance  
•• Of major importance

	 1.	 Prescott JW. Quantitative imaging biomarkers: the application of 
advanced image processing and analysis to clinical and preclini-
cal decision making. J Digit Imaging. 2013;26(1):97–108.

	 2.	 Vahia BP, Ipsit V, Forester P. Motion mapping in humans as a 
biomarker for psychiatric disorders. Neuropsychopharmacol-
ogy. 2019;44(1):231–2.



	 Current Osteoporosis Reports

1 3

	 3.	 Moissenet F, Rose-Dulcina K, Armand S, Genevay S. A sys-
tematic review of movement and muscular activity biomarkers 
to discriminate non-specific chronic low back pain patients 
from an asymptomatic population. Sci Rep. 2021;11(1):5850.

	 4.	 Howell JD. Early clinical use of the X-ray. Trans Am Clin 
Climatol Assoc. 2016;127:341.

	 5.	 Currey JD. The structure and mechanics of bone. J Mater Sci. 
2012;47(1):41–54.

	 6.	 Wallace JM. Chapter 6 Skeletal hard tissue biomechanics. In: 
Burr DB, Allen MR, editors. Basic and applied bone biol-
ogy. San Diego: Academic Press; 2014. p 115–130. https://​doi.​
org/​10.​1016/​B978-0-​12-​416015-​6.​00006-X. https://​www.​scien​
cedir​ect.​com/​scien​ce/​artic​le/​pii/​ B9780​12416​01560​0006X. 
Accessed 10 Nov 2022.

	 7.	 Cowin SC. (ed.) Bone mechanics handbook, 2nd ed. Boca Raton, 
FL: CRC press; 2001.

	 8.	 Friedman MA, Zhang Y, Wayne JS, Farber CR, Donahue HJ. 
Single limb immobilization model for bone loss from unloading. 
J Biomech. 2019;83:181–9. https://​doi.​org/​10.​1016/j.​jbiom​ech.​
2018.​11.​049.

	 9.	 Warden SJ, Turner CH. Mechanotransduction in the cortical 
bone is most efficient at loading frequencies of 5–10 Hz. Bone. 
2004;34(2):261–70. https://​doi.​org/​10.​1016/j.​bone.​2003.​11.​011.

	10.	 Kanis J, McCloskey E, Johansson H, Oden A, Ström O, Borg-
ström F. Development and use of FRAX® in osteoporosis. 
Osteoporos Int. 2010;21(2):407–13.

	11.	 Tomasian A, Hillen TJ, Jennings JW. Bone biopsies: what radi-
ologists need to know. Am J Roentgenol. 2020;215(3):523–33.

	12.	 Rauch F. Watching bone cells at work: what we can see from 
bone biopsies. Pediatr Nephrol. 2006;21(4):457–62.

	13.	 Brekelmans W, Poort H, Slooff T. A new method to analyse 
the mechanical behaviour of skeletal parts. Acta Orthop Scand. 
1972;43(5):301–17.

	14.	 Huiskes R, Chao EY. A survey of finite element analysis 
in orthopedic biomechanics: the first decade. J Biomech. 
1983;16(6):385–409.

	15.	 Adams AL, Fischer H, Kopperdahl DL, Lee DC, Black DM, 
Bouxsein ML, Fatemi S, Khosla S, Orwoll ES, Siris ES, et al. 
Osteoporosis and hip fracture risk from routine computed 
tomography scans: the Fracture, Osteoporosis, and CT Utiliza-
tion Study (FOCUS). J Bone Miner Res. 2018;33(7):1291–301.

	16.	 Schwarzenberg P, Klein K, Ferguson SJ, von Rechenberg B, 
Darwiche S, Dailey HL. Virtual mechanical tests out-perform 
morphometric measures for assessment of mechanical stability 
of fracture healing in vivo. J Orthop Res®. 2021;39(4):727–38.

	17.	 Basu P, Beall A, Simmons D, Vannier M. 3-D femoral stress 
analysis using CT scans and p-version FEM. Biomater Med 
Devices Artif Organs. 1985;13(3–4):163–86.

	18.	 Keyak J, Meagher J, Skinner H, Mote C Jr. Automated three-
dimensional finite element modelling of bone: a new method. J 
Biomed Eng. 1990;12(5):389–97.

	19.	 Eggermont F, Derikx LC, Free J, Van Leeuwen R, Van Der Lin-
den YM, Verdonschot N, Tanck E. Effect of different CT scan-
ners and settings on femoral failure loads calculated by finite 
element models. J Orthop Res®. 2018;36(8):2288–95.

	20.	 Benca E, Amini M, Pahr DH. Effect of CT imaging on the accu-
racy of the finite element modelling in bone. Eur Radiol Exp. 
2020;4(1):1–8.

	21.	 Anderson PA, Polly DW, Binkley NC, Pickhardt PJ. Clinical use 
of opportunistic computed tomography screening for osteoporo-
sis. JBJS. 2018;100(23):2073–81.

	22.	 Ohman-Magi C, Holub O, Wu D, Hall RM, Persson C. Den-
sity and mechanical properties of vertebral trabecular bone—a 
review. JOR spine. 2021;4(4):e1176.

	23.	 Fleps I, Bahaloo H, Zysset PK, Ferguson SJ, Pálsson H, Hel-
gason B. Empirical relationships between bone density and 

ultimate strength: a literature review. J Mech Behav Biomed 
Mater. 2020;110:103866.

	24.••	Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone 
modulus–density relationships depend on anatomic site. J Bio-
mech. 2003;36(7):897–904. Comprehensive development of 
orientation specific density-modulus relationships in multi-
ple anatomical sites for use in FE model material property 
assignment.

	25.	 Ren T, Klein K, von Rechenberg B, Darwiche S, Dailey HL. 
Image based radiodensity profilometry measures early remod-
eling at the bone callus interface in sheep. Biomech Model 
Mechanobiol. 2022;21(2):615–26.

	26.	 Fung A, Loundagin LL, Edwards WB. Experimental validation 
of finite element predicted bone strain in the human metatarsal. 
J Biomech. 2017;60:22–9.

	27.••	Inglis B, Schwarzenberg P, Klein K, von Rechenberg B, Dar-
wiche S, Dailey HL. Biomechanical duality of fracture heal-
ing captured using virtual mechanical testing and validated in 
ovine bones. Sci Rep. 2022;12(1):2492. Application of virtual 
mechanical testing for in situ optimization of density-modu-
lus scaling equations.

	28.	 Guha I, Zhang X, Rajapakse CS, Chang G, Saha PK. Finite 
element analysis of trabecular bone microstructure using CT 
imaging and continuum mechanical modeling. Med Phys. 
2022;49(6):3886–99.

	29.	 Kersh ME, Zysset PK, Pahr DH, Wolfram U, Larsson D, Pandy 
MG. Measurement of structural anisotropy in femoral tra-
becular bone using clinical-resolution CT images. J Biomech. 
2013;46(15):2659–66.

	30.	 Dembia CL, Bianco NA, Falisse A, Hicks JL, Delp SL. Open-
Sim Moco: Musculoskeletal optimal control. PLoS Comput Biol. 
2020;16(12):e1008493.

	31.	 M. S. Shourijeh, B. J. Fregly, Muscle synergies modify opti-
mization estimates of joint stiffness during walking, Journal of 
Biomechanical Engineering 2020; 142 (1).

	32.	 Sadeghian SM, Shapiro FD, Shefelbine SJ. Computational model 
of endochondral ossification: Simulating growth of a long bone. 
Bone. 2021;153:116132.

	33.	 Verbruggen SW, Loo JH, Hayat TT, Hajnal JV, Ruther-
ford MA, Phillips A, Nowlan NC. Modeling the biome-
chanics of fetal movements. Biomech Model Mechanobiol. 
2016;15(4):995–1004.

	34.•	 Verbruggen SW, Kainz B, Shelmerdine SC, Arthurs OJ, Hajnal 
JV, Rutherford MA, Phillips AT, Nowlan NC. Altered biome-
chanical stimulation of the developing hip joint in presence of 
hip dysplasia risk factors. J Biomech. 2018;78:1. Muscle-driven 
finite element models establishing a correlation between the 
biomechanics of fetal movements and the risk of develop-
mental hip disorders.

	35.	 Watson PJ, Fagan MJ, Dobson CA. The influence of musculo-
skeletal forces on the growth of the prenatal cortex in the ilium: a 
finite element study. Comput Methods Biomech Biomed Engin. 
2020;23(13):959–67.

	36.	 Van Der Meulen MC, Carter DR. Developmental mechanics 
determine long bone allometry. J Theor Biol. 1995;172(4):323–7.

	37.	 Warden SJ, MantilaRoosa SM, Kersh ME, Hurd AL, Fleisig GS, 
Pandy MG, Fuchs RK. Physical activity when young provides 
lifelong benefits to cortical bone size and strength in men. Proc 
National Acad Sci. 2014;111(14):5337–42.

	38.	 Song H, Polk JD, Kersh ME. Rat bone properties and 
their relationship to gait during growth. J Exp Biol. 
2019;222(18):jeb203554.

	39.	 Moshage SG, McCoy AM, Polk JD, Kersh ME. Tempo-
ral and spatial changes in bone accrual, density, and strain 
energy density in growing foals. J Mech Behav Biomed Mater. 
2020;103:103568.

https://doi.org/10.1016/B978-0-12-416015-6.00006-X
https://doi.org/10.1016/B978-0-12-416015-6.00006-X
https://www.sciencedirect.com/science/article/pii/ B978012416015600006X
https://www.sciencedirect.com/science/article/pii/ B978012416015600006X
https://doi.org/10.1016/j.jbiomech.2018.11.049
https://doi.org/10.1016/j.jbiomech.2018.11.049
https://doi.org/10.1016/j.bone.2003.11.011


Current Osteoporosis Reports	

1 3

	40.	 Yadav P, Shefelbine SJ, Pontén E, Gutierrez-Farewik 
EM. Influence of muscle groups’ activation on proximal 
femoral growth tendency. Biomech Model Mechanobiol. 
2017;16(6):1869–83.

	41.	 Kainz H, Killen BA, Wesseling M, Perez-Boerema F, Pitto 
L, Garcia Aznar JM, Shefelbine S, Jonkers I. A multi-scale 
modelling framework combining musculoskeletal rigid-body 
simulations with adaptive finite element analyses, to evaluate 
the impact of femoral geometry on hip joint contact forces and 
femoral bone growth. PLoS One. 2020;15(7):e0235966.

	42.••	Kersh ME, Martelli S, Zebaze R, Seeman E, Pandy MG. 
Mechanical loading of the femoral neck in human locomotion. 
J Bone Miner Res. 2018;33(11):1999–2006. First subject-spe-
cific multi-scale finite element models simulating different 
locomotive tasks.

	43.	 Yan C, Bice RJ, Frame JW, Warden SJ, Kersh ME. Multidirec-
tional basketball activities load different regions of the tibia: 
a subject specific muscle-driven finite element study. Bone. 
2022;159:116392.

	44.	 Bhatia VA, Edwards WB, Troy KL. Predicting surface strains 
at the human distal radius during an in vivo loading task—
finite element model validation and application. J Biomech. 
2014;47(11):2759–65.

	45.••	Troy KL, Mancuso ME, Johnson JE, Wu Z, Schnitzer TJ, But-
ler TA. Bone adaptation in adult women is related to loading 
dose: a 12-month randomized controlled trial. J Bone Miner Res. 
2020;35(7):1300–12. Rigorous measurements of bone adapta-
tion to in vivo loading in humans using multi-scale clinical 
and HR-PQCT finite element models.

	46.	 Brown JP, Engelke K, Keaveny TM, Chines A, Chapurlat R, 
Foldes AJ, Nogues X, Civitelli R, De Villiers T, Massari F, 
et al. Romosozumab improves lumbar spine bone mass and bone 
strength parameters relative to alendronate in postmenopausal 
women: results from the Active-Controlled Fracture Study 
in Postmenopausal Women with Osteoporosis at High Risk 
(ARCH) trial. J Bone Miner Res. 2021;36(11):2139–52.

	47.	 Zysset PK, Dall’Ara E, Varga P, Pahr DH. Finite element analysis 
for prediction of bone strength. Bone Key Rep. 2013;2:386.

	48.	 Zysset P, Qin L, Lang T, Khosla S, Leslie WD, Shepherd JA, 
Schousboe JT, Engelke K. Clinical use of quantitative computed 
tomography–based finite element analysis of the hip and spine 
in the management of osteoporosis in adults: the 2015 ISCD 
official positions—part II. J Clin Densitom. 2015;18(3):359–92.

	49.	 Johannesdottir F, Allaire B, Bouxsein ML. Fracture prediction by 
computed tomography and finite element analysis: current and 
future perspectives. Curr Osteoporos Rep. 2018;16(4):411–22.

	50.	 Keaveny T, Clarke B, Cosman F, Orwoll E, Siris E, Khosla S, 
Bouxsein M. Biomechanical computed tomography analysis 
(BCT) for clinical assessment of osteoporosis. Osteoporos Int. 
2020;31(6):1025–48.

	51.	 Aggarwal V, Maslen C, Abel RL, Bhattacharya P, Bro-
miley PA, Clark EM, Compston JE, Crabtree N, Gregory 
JS, Kariki EP, et  al. Opportunistic diagnosis of osteoporo-
sis fragile bone strength and vertebral fractures from rou-
tine CT scans a review of approved technology systems and 
pathways to implementation. Ther Adv Musculoskelet Dis. 
2021;13:1759720X211024029.

	52.	 Samelson EJ, Broe KE, Xu H, Yang L, Boyd S, Biver E, Szulc 
P, Adachi J, Amin S, Atkinson E, et al. Cortical and trabecular 
bone microarchitecture as an independent predictor of incident 
fracture risk in older women and men in the Bone Microarchi-
tecture International Consortium (BOMIC): a prospective study. 
Lancet Diabetes Endocrinol. 2019;7(1):34–43.

	53.	 Sornay-Rendu E, Boutroy S, Duboeuf F, Chapurlat RD. Bone 
microarchitecture assessed by HR-PQCT as predictor of fracture 

risk in postmenopausal women: the OFELY study. J Bone Miner 
Res. 2017;32(6):1243–51.

	54.	 Westbury LD, Shere C, Edwards MH, Cooper C, Dennison EM, 
Ward KA. Cluster analysis of finite element analysis and bone 
microarchitectural parameters identifies phenotypes with high 
fracture risk. Calcif Tissue Int. 2019;105(3):252–62.

	55.	 Litwic A, Westbury L, Robinson D, Ward K, Cooper C, Den-
nison E. Bone phenotype assessed by HRPQCT and associa-
tions with fracture risk in the glow study. Calcif Tissue Int. 
2018;102(1):14–22.

	56.	 Dailey HL, Schwarzenberg P, Daly CJ, Boran SA, Maher MM, 
Harty JA. Virtual mechanical testing based on low-dose com-
puted tomography scans for tibial fracture: a pilot study of pre-
diction of time to union and comparison with subjective out-
comes scoring. JBJS. 2019;101(13):1193–202.

	57.	 Yu T, Gao H, Liu T, Huang Y, Wang C. Effects of immedi-
ately static loading on osteointegration and osteogenesis around 
3D-printed porous implant: a histological and biomechanical 
study. Mater Sci Eng, C. 2020;108:110406.

	58.	 Tian Y, Li Z, Chen J, Yuan X, Sadowsky SJ, Coyac BR, Brunski 
JB, Helms JA. Mechano-adaptive responses of alveolar bone to 
implant hyper-loading in a pre-clinical in vivo model. Clin Oral 
Implant Res. 2020;31(12):1159–72.

	59.	 Tian Y, Sadowsky SJ, Brunski JB, Yuan X, Helms JA. Effects 
of masticatory loading on bone remodeling around teeth versus 
implants: insights from a preclinical model. Clin Oral Implant 
Res. 2022;33(3):342–52.

	60.	 de Barros e Lima Bueno R, Dias AP, Ponce KJ, Brunski JB, 
Nanci A. System for application of controlled forces on dental 
implants in rat maxillae: influence of the number of load cycles 
on bone healing. J Biomed Mater Res Part B: Appl Biomater. 
2020;108(3):965–75.

	61.	 Li C, Tan R, Guo Y, Li S. Using 3D finite element models 
verified the importance of callus material and microstructure 
in biomechanics restoration during bone defect repair. Comput 
Methods Biomech Biomed Engin. 2018;21(1):83–90.

	62.	 Suzuki T, Matsuura Y, Yamazaki T, Akasaka T, Ozone E, Mat-
suyama Y, Mukai M, Ohara T, Wakita H, Taniguchi S, et al. 
Biomechanics of callus in the bone healing process, deter-
mined by specimen specific finite element analysis. Bone. 
2020;132:115212.

	63.	 Kesavan C, Rundle C, Mohan S. Repeated mild traumatic brain 
injury impairs fracture healing in male mice. BMC Res Notes. 
2022;15(1):1–6.

	64.	 Hildebrand M, Herrmann M, Gieling F, Gehweiler D, Mischler 
D, Verrier S, Alini M, Zeiter  S, Thompson K. Development 
and characterization of a predictive microCT-based non-
union model in Fischer F344 rats. Arch Orthop Trauma Surg. 
2022;142:579–590.

	65.•	 Malhotra A, Walle M, Paul GR, Kuhn GA, Muller R. Applica-
tion of subject-specific adaptive mechanical loading for bone 
healing in a mouse tail vertebral defect. Sci Rep. 2021;11(1):1–
10. Use of real time finite element models to assess bone heal-
ing longitudinally.

	66.	 Paul GR, Wehrle E, Tourolle DC, Kuhn GA, Muller R. Realtime 
finite element analysis allows homogenization of tissue scale 
strains and reduces variance in a mouse defect healing model. 
Sci Rep. 2021;11(1):1–12.

	67.•	 Whittier DE, Samelson EJ, Hannan MT, Burt LA, Hanley DA, 
Biver E, Szulc P, Sornay-Rendu E, Merle B, Chapurlat R, et al. 
Bone microarchitecture phenotypes identified in older adults are 
associated with different levels of osteoporotic fracture risk. J 
Bone Miner Res. 2022;37(3):428–39. Identification of bone 
phenotypes associated with osteoporotic fracture risk using 
virtual mechanical tests.



	 Current Osteoporosis Reports

1 3

	68.	 Orassi V, Duda GN, Heiland M, Fischer H, Rendenbach C, 
Checa S. Biomechanical assessment of the validity of sheep 
as a preclinical model for testing mandibular fracture fixation 
devices. Frontiers Bioeng and Biotechnol. 2021;9:672176.

	69.	 Dailey HL, Schwarzenberg P, Webb EB III, Boran SA, Guerin S, 
Harty JA. Pilot study of micromotion nailing for mechanical stimu-
lation of tibial fracture healing. Bone & Joint Open. 2021;2(10):825.

	70.	 Yoda N, Zheng K, Chen J, Liao Z, Koyama S, Peck C, Swain 
M, Sasaki K, Li Q. Biomechanical analysis of bone remodeling 
following mandibular reconstruction using fibula free flap. Med 
Eng Phys. 2018;56:1–8.

	71.	 Bevers M, Daniels A, van Rietbergen B, Geusens P, van Kuijk 
S, Sassen S, Kaarsemaker S, Hannemann P, Poeze M, Janzing 
H, et al. Assessment of the healing of conservatively-treated 
scaphoid fractures using HR-PQCT. Bone. 2021;153:116161.

	72.	 Spanswick PJ, Whittier DE, Kwong C, Korley R, Boyd SK, Sch-
neider PS. Improvements in radiographic and clinical assessment 
of distal radius fracture healing by FE-estimated bone stiffness. 
Bone reports. 2021;14:100748.

	73.	 Spanswick P, Whittier D, Kwong C, Korley R, Boyd S, Sch-
neider P. Restoration of stiffness during fracture healing at the 
distal radius, using HR-PQCT and finite element methods. J Clin 
Densitom. 2021;24(3):422–32.

	74.	 Whittier DE, Boyd SK, Burghardt AJ, Paccou J, GhasemZadeh 
A, Chapurlat R, Engelke K, Bouxsein ML. Guidelines for the 
assessment of bone density and microarchitecture in vivo using 
high resolution peripheral quantitative computed tomography. 
Osteoporos Int. 2020;31(9):1607–27.

	75.	 Ohs N, Collins CJ, Atkins PR. Validation of HR-PQCT against 
microCT for morphometric and biomechanical analyses: a 
review. Bone reports. 2020;13:100711.

	76.	 Haider IT, Lobos SM, Simonian N, Schnitzer TJ, Edwards WB. 
Bone fragility after spinal cord injury: reductions in stiffness and 
bone mineral at the distal femur and proximal tibia as a function 
of time. Osteoporos Int. 2018;29(12):2703–15.

	77.	 Edwards WB, Schnitzer TJ, Troy KL. The mechanical conse-
quence of actual bone loss and simulated bone recovery in acute 
spinal cord injury. Bone. 2014;60:141–7.

	78.	 Fang Y, Morse L, Nguyen N, Battaglino R, Goldstein R, Troy 
K. Functional electrical stimulation (FES)–assisted rowing com-
bined with zoledronic acid, but not alone, preserves distal femur 
strength and stiffness in people with chronic spinal cord injury. 
Osteoporos Int. 2021;32(3):549–58.

	79.	 Edwards WB, Simonian N, Haider IT, Anschel AS, Chen 
D, Gordon KE, Gregory EK, Kim KH, Parachuri R, Troy 
KL, et al. Effects of teriparatide and vibration on bone mass 
and bone strength in people with bone loss and spinal cord 
injury: a randomized, controlled trial. J Bone Miner Res. 
2018;33(10):1729–40.

	80.	 Troy KL, Edwards WB. Practical considerations for obtaining 
high quality quantitative computed tomography data of the skel-
etal system. Bone. 2018;110:58–65.

	81.	 Ketsiri T, Uppuganti S, Harkins KD, Gochberg DF, Nyman JS, 
Does MD. Finite element analysis of bone mechanical properties 
using MRI-derived bound and pore water concentration maps. 
Comput Methods Biomech Biomed Eng. 2022;1–12.

	82.	 Rajapakse CS, Kobe EA, Batzdorf AS, Hast MW, Wehrli FW. 
Accuracy of MRI-based finite element assessment of distal tibia 
compared to mechanical testing. Bone. 2018;108:71–8.

	83.	 Schileo E, Taddei F. Finite element assessment of bone fragility 
from clinical images Curr Osteoporos Rep. 2021;19(6):688–98.

	84.	 Krohn K, Schwartz EN, Chung Y-S, Lewiecki EM. Dual-energy 
X-ray absorptiometry monitoring with trabecular bone score: 
2019 ISCD official position. J Clin Densitom. 2019;22(4):501–5.

	85.	 Martelli S, Kersh ME, Pandy MG. Sensitivity of femoral strain 
calculations to anatomical scaling errors in musculoskeletal 
models of movement. J Biomech. 2015;48(13):3606–15.

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Mechanical Biomarkers in Bone Using Image-Based Finite Element Analysis
	Abstract
	Purpose of Review 
	Recent Findings 
	Summary 

	Introduction
	Finite Element Analysis—a Brief Primer
	Model Geometry
	Bone Material Properties
	Boundary Conditions

	Bone Response to In Vivo Loading
	Bone Development
	Bone Adaptation to Mechanical Stimuli

	Virtual Mechanical Tests
	Fracture Risk Assessment
	Preclinical Fracture Healing
	Clinical Fracture Healing
	Insight into Clinical Interventions

	Current Challenges and Critical Needs
	Image-Based Material Properties
	Boundary Conditions
	Validation
	Clinical Translation

	Concluding Remarks
	References


